Lattice Boltzmann method for modeling liquid-vapor interface configurations in porous media

نویسنده

  • Michael C. Sukop
چکیده

[1] The lattice Boltzmann method (LBM) has emerged as a powerful tool for simulating the behavior of multiphase fluid systems in complex pore networks. Specifically, the single component multiphase LBM can simulate the interfacial phenomena of surface tension and adsorption and thus be used for modeling fluids such as water and its vapor in porous media. This paper provides an introduction to LBM applications to interface configurations in partially saturated porous media. Key elements of this LBM application are fluid-fluid and fluid-solid interactions that successfully mimic the Young-Laplace equation and liquid film adsorption. LBM simulations of liquid behavior in simple pore geometry considering capillarity and adsorption are in good agreement with analytical solutions and serve as critical first steps toward validating this approach. We demonstrate the usefulness of LBM in constructing virtual liquid retention measurements based on porous media imagery. Results of this study provide a basis for application of LBM to understanding liquid configurations in more complex geometries and clear a path for applications involving interface migration, flow, and transport in partially saturated porous media.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gas-liquid Relative Permeability Estimation in 2D Porous Media by Lattice Boltzmann Method: Low Viscosity Ratio 2D LBM Relative Permeability

This work is a primary achievement in studying the CO2 and N2–oil systems. To predict gas-liquid relative permeability curves, a Shan-Chen type multicomponent multiphase lattice Boltzmann model for two-phase flow through 2D porous media is developed. Periodic and bounce back boundary conditions are applied to the model with the Guo scheme for the external body force (i.e.,...

متن کامل

Lattice Boltzmann modeling of two component gas diffusion in solid oxide fuel cell

In recent years, the need for high efficiency and low emission power generation systems has made much attention to the use of fuel cell technology. The solid oxide fuel cells due to their high operating temperature (800 ℃ -1000 ℃) are suitable for power generation systems.Two-component gas flow (H2 and H2O) in the porous media of solid oxide fuel cell’s anode have been modeled via lattice Boltz...

متن کامل

Invasion percolation of single component, multiphase fluids with lattice Boltzmann models

Application of the lattice Boltzmann method (LBM) to invasion percolation of single component multiphase fluids in porous media offers an opportunity for more realistic modeling of the configurations and dynamics of liquid/vapor and liquid/solid interfaces. The complex geometry of connected paths in standard invasion percolation models arises solely from the spatial arrangement of simple elemen...

متن کامل

Using Lattice Boltzmann Method to Investigate the Effects of Porous Media on Heat Transfer from Solid Block inside a Channel

A numerical investigation of forced convection in a channel with hot solid block inside a square porous block mounted on a bottom wall was carried out. The lattice Boltzmann method was applied for numerical simulations. The fluid flow in the porous media was simulated by Brinkman-Forchheimer model. The effects of parameters such as porosity and thermal conductivity ratio over flow pattern and t...

متن کامل

Fluid Interfaces in Phase Transition Problems: Lattice-boltzmann Method

The Lattice-Boltzmann method has been seen as an alternative model for the computational simulation of fluid dynamics. It is based on the Boltzmann transport equation, which serves as the foundation of kinetic theory of gases. Considering its suitability for complex geometry problems, it has been widely applied for the description of fluid flow with one or more components inside porous media, e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003